Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
نویسندگان
چکیده
Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepared using a space-holder sintering method. The strength of the Ti6Ta4Sn scaffold with a porosity of 75% was found to be significantly higher than that of a pure Ti scaffold with the same porosity. The elastic modulus of the porous alloy can be customized to match that of human bone by adjusting its porosity. In addition, the porous Ti6Ta4Sn alloy exhibited an interconnected porous structure, which enabled the ingrowth of new bone tissues. Cell culture results revealed that human SaOS(2) osteoblast-like cells grew and spread well on the surfaces of the solid alloy, and throughout the porous scaffold. The surface roughness of the alloy showed a significant effect on the cell behavior, and the optimum surface roughness range for the adhesion of the SaOS(2) cell on the alloy was 0.15 to 0.35 mum. The present study illustrated the feasibility of using the porous Ti6Ta4Sn alloy scaffold as an orthopedic implant material with a special emphasis on its excellent biomechanical properties and in vitro biocompatibility with a high preference by osteoblast-like cells.
منابع مشابه
Current Concepts in Scaffolding for Bone Tissue Engineering
Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bonetissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials andfunctional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissueengineering. While osteoconductive materials such as hyd...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملA Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملHeat Treatment Of Cobalt-Base Alloy Surgical Implants With Hydroxyapatite-Bioglass For Surface Bioactivation
ASTM F-75 Cobalt-base alloy castings are widely used for manufacturing orthopedic implants. This alloy needs both homogenization and solutionizing heat treatment after casting, as well as bioactivation of the surface to increase the ability of tissue bonding. In this study, ASTM F-75 Cobalt-base substrate was heat treated at 1220°C for 1 hour in contact with Hydroxyapatite-Bioglass powder in or...
متن کاملRegulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2009